

2021 Annual Conference & Innovation Awards

Smart Transportation Alliance

Roundtable 2 – Decarbonising transportation infrastructures: Smart policies and viable funding & financing mechanisms

José Manuel Vassallo TRANSyT UPM

25 November 2021

Why is so important to decarbonize Transport?

Smart Transportation Alliance

GHG Emissions by sector in EU 28 (growth from 1990)

Energy industries Industry (***) Transport (**) Residential and commercial Agriculture, forestry, fisheries (****)
Other (*****)
Total

GHG emissions by transport mode

Smart Transportation Alliance

(***) Excluding indirect emissions from electricity consumption.

GHG Emissions by transport mode in EU 28 (share and growth from 1990)

Total civil aviation • Road transportation • Railways (***) • Total navigation • Total transport

Source: EEA

stax

Smart Transportation Alliance

CARS LIGHT-DUTY TRUCKS HEAVY-DUTY TRUCKS AND BUSES MOTORCYCLES OTHER ROAD TRANSPORTATION 1.2 % 26.5 % 2018 60.3 % 11.9%

GHG emissions by road transport vehicle

GHG Emissions by type of road mean in EU 28 (share and growth from 1990)

Source: EEA

Is it possible to reduce mobility?

- It is complicated without compromising quality of life
- There is a slight trend towards decoupling mobility and GDP
- > Opposite forces after COVID19:
 - Tele-working / teleconferences
 - Urban sprawl
 - Greater use of cars
- Some breakthrough innovations may have a contribution
 - > 3D Printing

PASSENGERS (1) (pkm)

GOODS (2) (tkm)

GDP (AT CONSTANT YEAR 2005 PRICES)

Is shifting to other modes a solution?

Smart Transportation Alliance

Some modes have market niches where is difficult to compete

NB:

- Road transport for last mile
- Aviation for intercontinental trips
- Ships for crossing the ocean

MODAL SPLIT

						%
	ROAD	RAIL	INLAND WATERWAYS	PIPELINES	SEA	AIR
1995	47.0	15.6	5.1	4.3	28.0	0.1
2000	48.8	14.1	4.9	4.2	28.0	0.1
2005	51.4	12.8	4.5	4.1	27.1	0.1
2010	51.5	12.4	5.1	3.7	27.2	0.1
2011	50.8	13.2	4.7	3.6	27.7	0.1
2012	50.2	13.0	5.1	3.6	28.1	0.1
2013	50.5	12.8	5.1	3.4	28.2	0.1
2014	50.2	12.8	5.0	3.3	28.7	0.1
2015	50.8	12.9	4.8	3.4	28.1	0.1
2016	50.8	12.9	4.6	3.3	28.4	0.1
2017	51.8	12.6	4.5	3.2	27.9	0.1
2018	51.0	12.6	4.0	3.1	29.2	0.1

MODAL SPLIT

							%
	PASSEN- GER CARS	P2W	BUS AND COACH	RAILWAY	TRAM AND METRO	AIR	SEA
1995	73.0	2.4	10.4	6.9	1.4	5.3	0.6
2000	73.2	2.0	9.9	<u>6.8</u>	1.4	6.3	0.5
2005	73.1	2.2	9.5	6.5	1.4	6.9	0.5
2006	73.0	2.1	9.4	6.6	1.4	7.1	0.5
2007	72.8	2.0	9.4	6.6	1.4	7.3	0.5
2008	72.6	2.1	9.5	<u>6.8</u>	1.5	7.1	0.5
2009	73.8	2.1	9.0	6.6	1.4	6.7	0.4
2010	73.5	2.1	8.9	6.6	1.5	7.0	0.4
2011	72.8	2.2	9.0	6.7	1.5	7.5	0.4
2012	72.4	2.2	9.1	6.9	1.5	7.6	0.3
2013	72.6	2.2	8.9	6.9	1.5	7.5	0.3
2014	72.6	2.2	8.7	6.9	1.5	7.8	0.3
2015	72.5	2.1	8.7	6.8	1.5	8.1	0.3
2016	72.3	2.1	8.5	6.7	1.5	8.5	0.4
2017	72.1	1.9	8.0	6.9	1.5	9.2	0.4
2018	71.7	1.8	8.0	6.9	1.5	9.6	0.4

Air and sea: only domestic and intra-EU-27 transport; estimates for air and for sea based on Eurostat data. The time series for maritime activity from 1995 to 2004 and for aviation activity from 1995 to 2007 have been recalibrated by DG Mobility and Transport in line with the new EU-27 figures to avoid break in series. P2W: powered two-wheelers.

Source: Eurostat

Taking a better advantage of the capacity of the vehicles

Smart Transportation Alliance

Passenger mobility

- Trend to share (car-sharing, car pooling, etc.)
- Better integration and connection across modes through MaaS
- Larger vehicles (air, train) and buses)

Freight mobility

- Optimization of empty returns through ICT and syncromodality
- Larger freight vehicles
- Crowshipping

Shift to low carbon technologies

Smart Transportation Alliance

Electricity

- Need of good infrastructure for recharging to enhance the shift
- Possibility of promoting dynamic charging in the road (ERS) for trucks

New infrastructure design

- Green Hydrogen may play a key role
 - It is crucial to reduce the cost of electrolysis

Biofuels and synthetic fuels

It is important to produce them with clean technologies

Source: HyEnergy GmbH

Increase efficiency in the whole cycle

Smart Transportation Alliance

To make renewable energy effective, the development of **energy storage technologies** becomes crucial

- Green Hydrogen
- Batteries

Economic incentives: pricing GHG emissions

Smart Transportation Alliance

The current mechanism (Cap and Trade) is not the most efficient one

- It does not reflect the marginal damage produced by GHG emissions
- It is not applicable to many sectors (such as road transport)

GHG pricing should be

- Harmonized across transport modes
- Proportional to carbon emissions
- Applicable to all countries and sectors
- Equal to the marginal damage

Source: World Bank

Part of the revenues should be devoted to research an innovation in decarbonization

Incentives to innovation

Smart Transportation Alliance

Implementation of zero carbon technologies

- Batteries production, capacity and recycling
- Reducing the cost of producing Green Hydrogen
- Alternative fuels for aviation and the truck industry
- Electric Road Systems

Other aspects

- > 3D printing
- Automation
- Syncromodality
- Carbon capture

2021 Annual Conference & Innovation Awards

Smart Transportation Alliance

Roundtable 2 – Decarbonising transportation infrastructures: Smart policies and viable funding & financing mechanisms

José Manuel Vassallo TRANSyT UPM

25 November 2021

THANK YOU FOR YOUR ATTENTION

Tribes European Quarter Avenue Marnix 17 1000 Brussels (Belgium) Tel: + 32 2 808 60 50

Email: info@smart-transportation.org

www.smart-transportation.org